Hypoxic preconditioning induces neuroprotective stanniocalcin-1 in brain via IL-6 signaling.

نویسندگان

  • Johan A Westberg
  • Martina Serlachius
  • Petri Lankila
  • Milena Penkowa
  • Juan Hidalgo
  • Leif C Andersson
چکیده

BACKGROUND AND PURPOSE Exposure of animals for a few hours to moderate hypoxia confers relative protection against subsequent ischemic brain damage. This phenomenon, known as hypoxic preconditioning, depends on new RNA and protein synthesis, but its molecular mechanisms are poorly understood. Increased expression of IL-6 is evident, particularly in the lungs of animals subjected to hypoxic preconditioning. Stanniocalcin-1 (STC-1) is a 56-kDa homodimeric glycoprotein originally discovered in bony fish, where it regulates calcium/phosphate homeostasis and protects against toxic hypercalcemia. We originally reported expression of mammalian STC-1 in brain neurons and showed that STC-1 guards neurons against hypercalcemic and hypoxic damage. METHODS We treated neural Paju cells with IL-6 and measured the induction of STC-1 mRNA. In addition, we quantified the effect of hypoxic preconditioning on Stc-1 mRNA levels in brains of wild-type and IL-6 deficient mice. Furthermore, we monitored the Stc-1 response in brains of wild-type and transgenic mice, overexpressing IL-6 in the astroglia, before and after induced brain injury. RESULTS Hypoxic preconditioning induced an upregulated expression of Stc-1 in brains of wild-type but not of IL-6-deficient mice. Induced brain injury elicited a stronger STC-1 response in brains of transgenic mice, with targeted astroglial IL-6 expression, than in brains of wild-type mice. Moreover, IL-6 induced STC-1 expression via MAPK signaling in neural Paju cells. CONCLUSIONS These findings indicate that IL-6-mediated expression of STC-1 is one molecular mechanism of hypoxic preconditioning-induced tolerance to brain ischemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypoxic preconditioning induces elevated expression of stanniocalcin-1 in the heart.

Animals exposed for a few hours to low oxygen content (8%) develop resistance against further ischemic myocardial damage. The molecular mechanism(s) behind this phenomenon, known as hypoxic preconditioning (HOPC), is still incompletely understood. Stanniocalcin-1 (STC-1) is an evolutionarily conserved glycoprotein originally discovered in fish, in which it regulates calcium/phosphate homeostasi...

متن کامل

Expression of signal transduction genes differs after hypoxic or isoflurane preconditioning of rat hippocampal slice cultures.

BACKGROUND Preconditioning neurons with noninjurious hypoxia (hypoxic preconditioning, HPC) or the anesthetic isoflurane (APC) induces tolerance of severe ischemic stress. The mechanisms of both types of preconditioning in the hippocampus require moderate increases in intracellular Ca and activation of protein kinase signaling. The authors hypothesized that the expression of signal transduction...

متن کامل

Neuroprotective Effects of Ischemic Preconditioning and Postconditioning on Global Brain Ischemia in Rats through the Same Effect on Inhibition of Apoptosis

Transient forebrain or global ischemia induces neuronal death in vulnerable CA1 pyramidal cells with many features. A brief period of ischemia, i.e., ischemic preconditioning, or a modified reperfusion such as ischemic postconditioning, can afford robust protection of CA1 neurons against ischemic challenge. Therefore, we investigated the effect of ischemic preconditioning and postconditioning o...

متن کامل

Endogenous IL-6 of mesenchymal stem cell improves behavioral outcome of hypoxic-ischemic brain damage neonatal rats by supressing apoptosis in astrocyte

Mesenchymal stem cell (MSC) transplantation reduces the neurological impairment caused by hypoxic-ischemic brain damage (HIBD) via immunomodulation. In the current study, we found that MSC transplantation improved learning and memory function and enhanced long-term potentiation in neonatal rats subjected to HIBD and the amount of IL-6 released from MSCs was far greater than that of other cytoki...

متن کامل

Neuroprotective effects of preconditioning ischemia on ischemic brain injury through down-regulating activation of JNK1/2 via N-methyl-D-aspartate receptor-mediated Akt1 activation.

Our previous studies have demonstrated that the JNK signaling pathway plays an important role in ischemic brain injury and is mediated via glutamate receptor 6. Others studies have shown that N-methyl-d-aspartate (NMDA) receptor is involved in the neuroprotection of ischemic preconditioning. Here we examined whether ischemic preconditioning down-regulates activation of the mixed lineage kinase-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 38 3  شماره 

صفحات  -

تاریخ انتشار 2007